Modelling 1 SUMMER TERM 2020

LECTURE 12 Gaussians

Quadratic Forms

The Iso-Lines: Quadrics

SPD Quadrics

hyperbolic

$$\lambda_1 < 0$$
, $\lambda_2 > 0$

degenerate case

$$\lambda_1 = 0, \lambda_2 \neq 0$$

Gaussians

Gaussians

Gaussian Normal Distribution

- Two parameters: μ , σ
- Density:

$$\mathcal{N}_{\mu,\sigma}(x) \coloneqq \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- Mean: μ
- Variance: σ^2

Gaussian normal distribution

Log Space

Neg-log-density

$$\log \mathcal{N}_{\mu,\sigma}(x) \coloneqq \frac{(x-\mu)^2}{2\sigma^2} + \frac{1}{2}\ln(2\pi\sigma^2)$$
$$= \frac{1}{2\sigma^2}(x-\mu)^2 + \text{const.}$$

Calculations in log-space

- Densities of products of Gaussians are Sums of quadratic polynomials
- Calculations simplified in log-space
 - Attention: Sum of Gaussians do not simplify!

Multi-Variate Gaussians

Gaussian Normal Distribution in d Dimensions

- Two parameters: μ (d-dim-vector), Σ (d × d matrix)
- Density:

$$\mathcal{N}_{\boldsymbol{\mu},\boldsymbol{\Sigma}}(\mathbf{x}) \coloneqq \left(\frac{1}{(2\pi)^{-\frac{d}{2}} \det(\boldsymbol{\Sigma})^{-\frac{1}{2}}}\right) e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}$$

- Mean: μ
- Covariance Matrix: Σ

Factorization

Remark: Tensor-Product Basis

Log Space

Neg-Log Density

- $\frac{1}{2}(\mathbf{x} \mathbf{\mu})^{\mathrm{T}} \mathbf{\Sigma}^{-1}(\mathbf{x} \mathbf{\mu}) + const$
- Quadratic multivariate polynomial

 Optimization (maximum probability density) by solving a linear system

- Gaussians are ellipsoids
 - Eigenvectors of Σ are main axes (principal component analysis, PCA)
 - Eigenvalues are extremal variances

More Rules for Computations with Gaussians

- Products of Gaussians are Gaussians
 - Algorithm: Add quadratic polynomials
 - Variance can only decrease
- Marginals ("projections") of Gaussians are Gaussians
 - Leave out dimensions in μ , Σ
- Affine mappings of Gaussians are Gaussians
 - Algorithm: apply map to argument x, yields different quadric
- Sums of Gaussians: no closed-form log-densities
- Entropy: $\frac{1}{2} \ln \left((2\pi e)^d \det(\Sigma) \right)$

Coordinate Transforms

- General Gaussians as affine transforms of unit Gaussians
 - Quadric $\frac{1}{2}(\mathbf{x} \mathbf{\mu})^{\mathrm{T}} \mathbf{\Sigma}^{-1}(\mathbf{x} \mathbf{\mu}) + c$
 - Main axis transform:

$$\mathbf{\Sigma}^{-1} = \mathbf{U}\mathbf{D}\mathbf{U}^{\mathrm{T}} = \mathbf{U}\begin{pmatrix} \sigma_{1}^{-2} & & \\ & \sigma_{2}^{-2} & & \\ & & \ddots \end{pmatrix} \mathbf{U}^{\mathrm{T}}$$

$$\mathbf{\Sigma}^{-\frac{1}{2}} = \mathbf{U}\mathbf{D}^{\frac{1}{2}}\mathbf{U}^{\mathrm{T}} = \mathbf{U}\begin{pmatrix} \sigma_{1}^{-1} & & \\ & & \sigma_{1}^{-1} & \\ & & & \ddots \end{pmatrix} \mathbf{U}^{\mathrm{T}}$$

Unit Gaussian

We get:

$$\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \left(\boldsymbol{\Sigma}^{-\frac{1}{2}}\right)^{\mathrm{T}} \left(\boldsymbol{\Sigma}^{-\frac{1}{2}}\right) (\mathbf{x} - \boldsymbol{\mu}) + c$$

$$= \frac{1}{2} \left(\left(\mathbf{\Sigma}^{-\frac{1}{2}} \right)_{\mathbf{X}} - \left(\mathbf{\Sigma}^{-\frac{1}{2}} \right)_{\mathbf{\mu}} \right)^{\mathrm{T}} \left(\left(\mathbf{\Sigma}^{-\frac{1}{2}} \right)_{\mathbf{X}} - \left(\mathbf{\Sigma}^{-\frac{1}{2}} \right)_{\mathbf{\mu}} \right) + c$$

- This is a unit Quadric / Gaussian x^TI x
 - rotated to Coordinate frame $\Sigma^{-\frac{1}{2}}$
 - and translated accordingly by $(\Sigma^{-\frac{1}{2}})_{\mu}$

Unit Gaussian

 In addition, we have to recompute the (log) normalization factor

$$c = \ln\left(\frac{1}{(2\pi)^{-\frac{d}{2}} \det(\Sigma)^{-\frac{1}{2}}}\right)$$

to ensure a unit integral

Rule of thumb

- All Gaussians are related by
 - Translation
 - Rotation & non-uniform scaling
 - Always adapting the density to integrate to 1

Mahalanobis Distance

Given:

- Gaussian with parameters μ, Σ
- Sample point $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$

Mahalanobis distance of x

$$D_M(\mathbf{x}) = \sqrt{(\mathbf{x} - \mathbf{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu})}$$
$$D_M(\mathbf{x}, \mathbf{y}) = \sqrt{(\mathbf{x} - \mathbf{y})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{y})}$$

Interpretation

- Distances in "unit Gaussian space"
- One unit = one standard deviation

Applications

Example

- Given a sample from and a Gaussian distribution
- How likely is this sample from that distribution?
- Density value not a good measure
 - Absolute density depends on breadth

Estimation from Data

Task

- Data $d_1, ..., d_n$ generated w/Gaussian distribution (i.i.d.)
- Estimate parameters

Maximum Likelihood Estimation

• Most likely parameters: $\operatorname{argmax}_{\mu,\Sigma} P(\mu, \Sigma | \mathbf{d}_1, ..., \mathbf{d}_n)$

$$\mu_{ml} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{d}_{i} \qquad \Sigma_{ml} = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{d}_{i} - \mu)(\mathbf{d}_{i} - \mu)^{\mathrm{T}}$$

mean

covariance