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Quadratic Forms



The Iso-Lines: Quadrics

elliptic hyperbolic degenerate case
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SPD Quadrics

elliptic hyperbolic degenerate case
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Gaussians



Gaussians

Gaussian Normal Distribution
= TWO parameters: u, o

= Density:
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Log Space

Neg-log-density

log ¥, ,(0) = S Ly 202
08 ua(x)' 2 52 +§n( T[O-)
1 2
=5z —H

Calculations in log-space

= Densities of products of Gaussians are
Sums of quadratic polynomials

= Calculations simplified in log-space
= Attention: Sum of Gaussians do not simplify!



Multi-Variate Gaussians

Gaussian Normal Distribution in d Dimensions
= Two parameters: p (d-dim-vector),  (d x d matrix)

= Density:
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= Covariance Matrix: 2




Factorization
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Remark: Tensor-Product Basis
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Log Space

Neg-Log Density
a %(X — wWTIZ 1 (x — ) + const

= Quadratic multivariate polynomial

Consequences
= Optimization (maximum probability density) by
solving a linear system

= Gaussians are ellipsoids

= Eigenvectors of X are main axes
(principal component analysis, PCA)

= Eigenvalues are extremal variances




More Rules for Gaussians

More Rules for Computations with Gaussians

= Products of Gaussians are Gaussians
= Algorithm: Add quadratic polynomials
= Variance can only decrease

= Marginals (“projections”) of Gaussians are Gaussians
= Leave out dimensionsin p, =

= Affine mappings of Gaussians are Gaussians
= Algorithm: apply map to argument x, yields different quadric

= Sums of Gaussians: no closed-form log-densities

= Entropy: %ln ((Zne)d det(Z))



More Rules for Gaussians

Coordinate Transforms

= General Gaussians as affine transforms of unit
Gaussians
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= Main axis transform:



More Rules for Gaussians

Unit Gaussian
= \We get: unit quadric
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More Rules for Gaussians

Unit Gaussian
= |n addition, we have to recompute unit quadric

the (log) normalization factor @XTIX
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to ensure a unit integral
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Rule of thumb general

= All Gaussians are related by
= Translation
= Rotation & non-uniform scaling
= Always adapting the density to integrate to 1



Mahalanobis Distance

Given:
= Gaussian with parameters p, X general

= Sample pointx,y € R4
Mahalanobis distance of x
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unit quadric
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Interpretation

= Distances in “unit Gaussian space”
= One unit = one standard deviation



Applications

Example
= Given a sample from and a Gaussian distribution
= How likely is this sample from that distribution?

= Density value not a good measure
= Absolute density depends on breadth
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Estimation from Data

Task

= Datadg, ..., d, generated w/Gaussian distribution (i.i.d.)
= Estimate parameters

Maximum Likelihood Estimation
= Most likely parameters: argmax,, yP(u, 2|d;, ..., d;)
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